
General existence results for weight three nonlift paramodular cusp
forms of prime level are due to Ibukiyama [7], who gave dimension for-
mulae for weight three paramodular cusp forms of prime level, S3 (K(p)).
In conjunction with the known dimensions of spaces of Jacobi forms,
one can see that the first weight three nonlifts with rational eigenvalues
occur at levels p = 61, 73, and 79. These same levels had been iden-
tified in the work of Ash, Gunnells, and McConnell [1] as occurring in
H5 (Γ0(N),C); the congruence subgroup Γ0(N) ⊆ SL4(Z) is defined by
having a bottom row in (NZ, NZ, NZ,Z). There is still no known map-
ping from nonlift paramodular cuspidal eigennewforms with rational
eigenvalues into the cohomology space H5 (Γ0(N),C), but perhaps one
can be constructed using the orthogonal point of view. These paramod-
ular cusp forms for p ∈ {61, 73, 79} were directly constructed by Poor
and Yuen in [13]. The eigenforms were constructed there as rational
functions of Gritsenko lifts of theta blocks. Using this construction, the
2-, 3-, and 5-Euler factors were computed, integral Fourier expansions
of content one were given, and congruences modulo ` for the Fourier
expansions of these nonlift eigenforms to those of Gritsenko lifts were
identified in each case. For p = 61, we have ` = 43; for p = 73, we
have ` = 3, 13; and for p = 79, we have ` = 2. In view of the results in
[6], it is clear that these same constructions may be written as a sum
of Gritsenko lifts and a Borcherds product.

Borcherds products have turned out to be a very useful tool for the
construction of paramodular cusp forms. Indeed, there is an algorithm
on the arXiv [12] for classifying all Borcherds products in all spaces
Sk (K(N)). The efficient implementation of this algorithm relies on a
good knowledge of a determining number of Fourier–Jacobi coefficients
for a given Sk (K(N)), and the algorithm has already been successfully
used in [2] and in [10]. Even very basic assertions, such as knowing
that a certain paramodular form is an eigenform, hinge on a rigorous
spanning set for Sk (K(N)). To this end, upper and lower bounds for
dimSk (K(N)) must be computed separately. For squarefree N there
is a dimension formula, due to Ibukiyama and Kitayama [8]. For N
not squarefree, the upper bounds are approachable via the method of
Jacobi restriction [9, 3, 11], which classifies possible initial Fourier–
Jacobi expansions of paramodular cusp forms. Lower bounds, on the
other hand, require the construction of paramodular forms by tech-
niques such as Borcherds products and Hecke spreading of Borcherds
products, compare [11].

Once a relevant space of paramodular forms has been spanned, typ-
ically because there is a matching arithmetic object as a candidate for



modularity, one can broach the separate question of computing enough
Euler factors to rigorously prove this modularity. In weight two, such a
strategy has recently had success in [4] for proving examples of modu-
larity for typical abelian surfaces defined over Q. The number of Euler
factors that can be computed is sensitive to the manner of construc-
tion of the paramodular eigenform, but good results can be expected
for paramodular eigenforms which are constructed as rational functions
of Gritsenko lifts of theta blocks. One natural arithmetic candidate for
modularity in the weight three case is given by the class of hypergeo-
metric motives.

Dave Roberts sent Poor, Shurman, and Yuen (henceforth PSY) some
hypergeometric motives with motivic Galois group GSp(4). One, for
example, had conductor N = 257, and PSY did find a new form with
rational eigenvalues in S3 (K(257)), whose 2-Euler factor in the arith-
metic normalization was

1 + x+ 6x2 + 8x3 + 64x4.

This matched the 2-Euler factor that Dave Roberts had. The paramod-
ular Atkin–Lehner sign here was −1. Such hypergeometric motives are
good candidates for examples of rigorous modularity proofs following
the pattern of [4]. Indeed, the theory of Galois representations is bet-
ter understood in weight three than in weight two, and the existence
of dimension formulae for prime level (and at least conjecturally for
squarefree level) makes the weight three case look more approachable
than the weight two case. PSY have recently written a number of new
programs aimed at gathering computational data, both rigorous and
heuristic, about weight three paramodular cusp forms. However, the
dimensions of the weight three spaces grow more quickly than in weight
two.

Also, Henri Cohen, in his Computing L-functions: A survey [5], says
that the Dwork quintic pencil

x51 + x52 + x53 + x54 + x55 − 5ψx1x2x3x4x5, (ψ ∈ Q)

can give a hypergeometric motive of conductor N = 525, which should
be modular with respect to a paramodular newform in S3 (K(N)). So
far, however, no arithmetic geometer has presented any Euler factors
for this case. Of course, the level N = 525 is not squarefree, but such
examples have in principle been dealt with in [10], where N = 16 was
successfully considered.

Due the start-up costs of beginning a computation, the best manner
in which to proceed is for PSY to respond to motives with known
conductors and Euler factors, trying to locate paramodular newforms



that match them. If anyone wants to send PSY such a target, we will
start working on that case to provide at least heuristic information.
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